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FEASIBILITY STUDY.OF SHELL BUCKLING ANALYSIS
USING THE MODIFIED STRUCTURE METHOD

By Gerald A. Cohen and Raphael T. Haftka
Structures Research Associates, Laguna Beach, California

SUMMARY

The "modified structure'" method for the approximate calculation of non-
linear buckling loads is formulated. In essence, this method consists of
viewing the nonlinearity in the prebuckling state as being caused by an
imperfection in the load system. The linear solution is an exact solution
if the real loads are augmented by a fictitious set of loads. The nonlinear
behavior under the real loads is recovered from the linear behavior by
considering a load imperfection equal and opposite to the fictitious loads
in the context of Koiter's imperfection theory. The method is appropriate
only if the fictitious loads are small enough to be treated as an
imperfection.

The feasibility of applying this method to shells is examined by
treating numerically several cases of shells of revolution under axisym-
metric loads. Both bifurcation and limit load buckling are considered.
Except for cases with very small nonlinearity, the method yields poor
results due to unexpectedly large fictitious loads.

In addition, the growth of error in the first-order load imperfection
theory used is evaluated by varying the size of the imperfection for two
shallow spherical cap cases (one limit load and one bifurcation case) from
zero to the full imperfection implied by the modified structure method.

It is shown that the error grows much faster in the bifurcation case than
in the limit load case. However, even in the limit load case, the error
grows to an unacceptable value (93.6%) when the imperfection reaches the
size of the fictitious loads.

It is therefore concluded that, although the method is theoretically

sound, in cases with significant nonlinearity the fictitious loads may be
too large for its application using first—order load imperfection theory.




INTRODUCTION

Asymptotic methods for the analysis of postbuckling behavior and
imperfection sensitivity of structures date back to Koiter's doctoral
dissertation (ref. 1) in 1945. It was not, however, until the early
sixties that the usefulness of these methods was generally recognized.
Though Koiter's method has been successfully used to explain the large
discrepancies between experimental and calculated buckling loads, it is
still only in the development state as a design tool for predicting
buckling loads of engineering structures.

The advantages of Koiter's method over a fully nonlinear analysis of
structures are twofold. First, a nonlinear problem is reduced to a small
number (usually one or two) of linear problems. Second, Koiter's analysis
yields the approximate behavior of a whole class of structures differing
from the original by small "imperfectionms."

Despite these advantages, Koiter's method has been applied only to a
relatively small class of problems because of limitations which have
restricted its widespread use. In its original form it applies only to
structures which have a bifurcation type of buckling. The fact is that
limit load buckling is much more common. In addition, prior knowledge of
the prebuckling path is necessary to apply the method. The calculation of
prebuckling behavior is usually a nonlinear problem. If this nonlinear
problem is not much simpler than that of the postbuckling behavior, then
most of the advantage of the asymptotic method is lost.

Shells of revolution under axisymmetric loading generally satisfy the
above conditions for the application of the method. Buckling is usually of
the bifurcation type as the behavior changes from axisymmetric to asymmetric,
and even if the prebuckling behavior is nonlinear, it is much simpler to
obtain than the exact postbuckling behavior. It is understandable, there-
fore, that most applications of Koiter's method to shell structures have been
to shells of revolution. Examples are given by Koiter (ref. 2), Budiansky,
Hutchinson and their students (refs. 3 and 4) for spheres, cylinders and
toroidal segments, and by Cohen's (ref. 5) computer program for ring-
stiffened orthotropic shells of revolution which have a unique buckling mode.

A way of generalizing Koiter's method to remove the two limitations
noted above was recently proposed by Haftka, Mallett and Nachbar (ref. 6)
and successfully applied to a number of frame and arch problems (ref. 7).
This so-called "modified structure' method is based on treating the
nonlinearity of the prebuckling path as a special kind of imperfection.

The linear stability analysis, for which standard methods are available for
most engineering structures, is viewed not as an approximation to the
actual behavior of the structure, but as the exact behavior of the




structure under a modified load system. The difference between the actual
and the modified load systems is viewed as a load imperfection. As the
linearized stability analysis almost always produces a bifurcation type of
buckling, it is possible to retrieve the behavior of the actual structure
by using Koiter's method to account for the influence of this load
imperfection. This analysis represents very little extra effort compared
to the linear stability analysis but gives almost all the information of a
costly nonlinear analysis.

The buckling of shells of revolution under asymmetric loading is a
problem which may be suitable for the application of the modified structure
method. The buckling is usually of the limit load type and even in
bifurcation cases the nonlinear prebuckling state is very expensive to
calculate. If, however, buckling-loads are calculated on the basis of a
linearized prebuckling behavior, the modified structure method may improve
the accuracy of such a calculation, using it as a first step, with modest
additional computational effort. It may be noted here that a computer
program for the calculation of these linearized buckling loads has
recently been developed under a NASA contract.

A natural way te verify the applicability of the method to shells of
revolution is to start with the case of axisymmetric loading. TFor this
case nonlinear solutions are available or may be readily obtained and may
be used to evaluate the accuracy and efficiency of the method. The
purpose of the present study is to assess the accuracy of the modified
structure method for shell structures by actual application of the method
to several cases of shells of revolution under axisymmetric loading.

SYMBOLS
a,b first and second pogﬁbuckling coefficients
c dimensionless area of ring cross section
E Young's modulus
eij,ep meridional and circumferential linear strain expressions
Fx’Fy’F¢ external ring force components per unit of length

F(k)(u,v) work functionals (ref. 9)
h shallow spherical shell rise

Li,Ly external shell surface moments per unit of area in the
meridional and circumferential directions, respectively




s,¢
11,1y

Tio

cylindrical shell length

modified shear stress couple

external ring moment components per unit of length
circumferential wave number

pressure distribution associated with normal pressure
field Ap(x,y,%); also pressure applied to spherical cap

spherical radius

small circle radius

semimajor axis of spheroid

semiminor axis of spheroid

effective shell force per unit of circumferential length
meridional and circumferential shell coordinates
meridional and circumferential stress resultants
modified shear stress resultant

ring hoop stress resultant

shell thickness

meridional and normal displacement components

shell displacement vector

external shell surface forces per unit of area in
meridional, circumferential, and normal directions,
respectively

axial and radial coordinates
imperfection functionals

effective y for limit load case, 2(-—am)1/2

pertaining to a fictitious load

first wvariation
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01,682,612

Generalized field
H(e)

Ly (w)

Loy (u)

Ly1(u,v)

q(})
q0

q; (u)

u

ug1,uf1suy]

€

shear thermal stress

meridional, circumferential, and shear shell free thermal
strains

circumferential free thermal strain of a ring

1/4 1/2

shallow spherical shell parameter, 2[3(1 - v%)] (h/t)
load factor

Poisson's ratio

perturbation parameter in imperfection analysis
imperfection amplitude

axial and radial shell displacements

shell rotations about circumferential, meridional, and
normal directions, respectively

ring rotation components

variables and operators:
linear operator relating stress to strain

linear operator representing linear part of strain-
displacement relations

quadratic operator representing nonlinear part of strain-
displacement relations

bilinear operator defined by the identity Lo(u + v) =
Lz(u) + 2L11(L1,V) + Lz(V)

mechanical load
dead part of mechanical load at A =1

linear operator representing live part of mechanical load
at A =1

displacement
expansion states defined by equation (5)

strain



() free thermal strain
60 free thermal strain at A =1

g stress

Subscripts:

c at bifurcation of perfect structure
s at buckling of imperfect structure
0,1,2 pertaining to prebuckling, buckling, or postbuckling

states, respectively

0() pertaining to the axisymmetric component of the second-
order postbuckling state

Superscripts:

(1) a( )/ax

(2) 92( ) /a2

(—) - pertaining to imperfection at E=1
™ pertaining to linear response at A =1
( )% evaluated at A = Ac

()’ a( )/3¢

ANALYTICAL FORMULATION

The modified structure method is based upon the idea that the linear
approximation to the behavior of a structure under a given load system is
also the exact behavior under a different set of loads. The difference
between the two sets of loads is treated as a load imperfection in the
framework of Koiter's method to correct the buckling load obtained from the
linear analysis. This method is appropriate, of course, only if the exact
behavior is not so highly nonlinear that the difference between the two
sets of loads is too large to be dealt with as an imperfection.

The formulation of the method is naturally divided into two independent
parts: (1) the load imperfection analysis, which yields the change in the




behavior of a bifurcating structure due to a small change in the load
system, and (2) the determination of the fictitious loads with which the
real loads must be augmented in order to enforce a linear prebuckling
response. In the modified structure method, it is convenient to think of
the "perfect structure" as the structure with the augmented load system
(real plus fictitious) applied to it. This structure, which has a linear
prebuckling response, is analyzed by conventional numerical methods. The
"imperfect structure" is the same structure with only the real loads (the
loads of interest) applied to it. Its behavior is approximately recovered
from the behavior of the perfect structure through the load imperfection
theory, i.e., by treating the negative of the fictitious loads as an
imperfection.

Load Imperfection Analysis

Imperfections usually considered in the application of Koiter's method
are initial deformations, i.e., geometric. The theory, however, is
applicable to other kinds of imperfections, and here it is applied to load
imperfections. The imperfection in the load system is viewed as additional
sets of mechanical loads Ea and free thermal strains EE, where £ is a
scalar imperfection amplitude. Both q and 6 may depend on the loading
intensity A. The development here is similar to that of reference 8 for
geometric imperfections.

The basic equations describing the behavior of an elastic structure
with a load imperfection are: the strain displacement relationship

e = Li(uw) + (1/2)Ly (u) (1a)
the constitutive equation
o =Hle -8 - £8(N)] (1b)
and equilibrium equation
o+8e = [q + Eq(A)]-6u (1e)
where
8¢ = Ly (Su) + Ljj(u,8u) (2)

The external mechanical and thermal loads, q.and 8, are assumed to be of
the formt

+I1t should be noted that the results of this section do not rely on the linear
dependence of the dead mechanical and thermal loads on A. The results are
unaltered if A8, and Aq; are replaced by the arbitrary functions GO(A) and

qp (1), respectively. As seen in the next section, in the modified structure
method the effective applied loads on the perfect structure are quadratic in A.



q = Afqo + q1(w)]

(3)
6 = A8

where qj(u) (the live load part) is a linear operator satisfying for any
two admissible displacement vectors u and v the reciprocal relation

q1(w) v = q1(v)*u 4)
The perfect structure (E = 0) is assumed to have a bifurcation at load
level A, from a fundamental prebuckling state ug(A). The displacement
expansion for the imperfect structure is assumed in the form [cf. eq. (31)
of ref. 8]
u = ug(d) + guy + E2uy + e + E[ugy + (A - A )ud
+ (L/2)(A - A )%ufy + cee + Buyy + E2upy + ce0] 0(E2) (5)

The prebuckling state ug(A) is expanded in a Taylor series about A = A, as
follows

wp(A) = ug* + (4 = ADuf% + (/2 (1 - A D2ufPx + e (6)
where (*) denotes that a quantity is evaluatgd at A = A,. Similar
expansions are obtained for op(A), q(A) and 6(A). As in reference 8, the
dependence of ) on £ and & is given approximately by

(A=A 8 - ar g2 - bA g3 = —Elaa_ + B(A = 1)) + yA E] (7

Substituting equation (5) into equation (1la) and using equatioms (6) and
(7) give the strain expansion

e =egg(A) + &gy + 26 + E3e3 + oo + ElE01 + (A = A eby + ---
+ gep + +--] + 0(E2) (8)
where expressions for e;, €5, and e3 are given in reference 9, and
€01 = L1(ug1) + Lyy(up*,upy) - 0"‘cLll(‘1(()1)""111) (9a)
ed1 = Ly(ugy) + Lyz(up*,upy) + L11(U3l)*,u01)
- BLyp §P#,u) - (W/2)ar Lig @§%,up) (9b)
e11 = Ly(uyy) + Ly Qug*,uyy) + Lyp(upsugy)
- yxcLll(uél)*,ul) - aAcLll(uél)*,uz)

- (l/Z)aaKCZLll(ugz)*,ul) (9¢)




Equations (9) may be obtained from equations (36) of reference 8 by setting
the geometric imperfection (denoted by U in that paper) to zero.

Substitution of equation (8) into equation (1b) and using the Taylox
series expansion for 6()A) gives the stress expansion

o = og(A) + £01 + £20p + E303 + ¢+ + E[ogy

+ (A = A0y + =+ Eopy + o]+ 0(2) (10)
wvhere
01 = H(ey), 02 = H(ep), o3 = H(ez), °*--* (11a)
091 = H(egy - 8%), of1 = H(edy - Wy, ... (11b)
011 = H(e11), -*° (11c)

Substitution of equations (2) and (10) into equation (lc), using equation
(7) and the Taylor series expansions for uo(k)ﬁ og(A), and q(1), and
equating to zero coefficients of &%, (A - Ac)T, ggk for k = 0,1,2,¢«-
yields a set of variationmal equilibrium equations satisfied by the stress
components. The equations for o7, 09, and o3 are given in reference 9. In
addition one obtains

gg1°8eqg® + og*-Ly1(ugy,6u) - Acql(ugl)-6u - aAcE(l)(ul,Gu)
- g%e6u = 0 (12a)
0g1°8eg® + og*-Lyj(ujy,6u) - 2,41 (ugy)-du - 5(1)*-au |
- 62 (uy,6m) - (1/2)en B (uy, 60
+ E(l)(u01,6u) =0 (12b)
011°8e0® + 0g¥-L13(uy1,8u) — A qy(ugy)-du + og1°L13(uy,8u)
+ 01°L13(ugy,6u) - yAcE(l)(ul,Gu) - aAcE(l)(uz,Gu)
- (1/2)aakc2E(2)(u1,6u) =0 (12¢)
As in references 8 and 9, compatibility con&itions for the above
field equations yield expressions for the coefficients a, b, o, B, and

y in equation (7). The postbuckling coefficients a and b do not depend
on the imperfection and are given by (ref. 9)

a = ~301 Ly (up) /22 F P uyyup) (13a)
b = -[og°Lo(u;) + 2071°Lyi(uy,uy) + aACF(l) (uz,us)
+ (1/2)a22 2F P (up,u) 172 F D (upyup) (13b)




The remaining coefficients, which determine the structural behavior in the
presence of a load imperfection, are given by

o = =[o7-8% + gx-uy 1A FD (uy ,up) (142)
B = FP (ugr,u1) - 015 P% - g W aey

= (/2)en P ug,un) ED (g ,up) (14b)
v = -[300 F P (u,up) + 2a0 7D (up,upp) + 29%u,

+ 202-5* + (l/2)aakc2F(2)(ul,u1)]/AcF(l)(u1,u1) (1l4c)

Once the expansion states and coefficients are calculated, equations
(5) and (7) give through the parameter & the approximate behavior of the
imperfect structure at loads in the vicinity of Age Ifa=8=0,
equation (7) has the two solutioms

£§=0 . (15a)

and A=A - Ey + at + bE2) (15b)

Bifurcation occurs at the intersection of the two solutions, so that the
buckling load A  of the imperfect structure is

Ag = A (L - EY) (16)

In Appendix A, the validity of equation (16) is verified by treating the

special case of a load imperfection proportional to the applied load. 1If
a # 0, the imperfect structure may buckle at a limit load which is found

from the condition dA/df = 0. To a first approximation, neglecting B and
Y, this gives

= Ac[l - 2(-aa€)l/2] if caf < 0 (17a)

>
R

>
R

= A [1 + 3(a2b§2/4)1/3] ifa=0,b<0 (17b)

Fictitious Loads

Given_the field equations of the structure, equations (la), (1b), and
(lc) with & = 0, additional loads A® and Aq are sought such that a solution
of the field equations is the solution of the linearized set of equations
given below

10



e = Lj(u) (18a)
o = H(e - ABp) (18b)
oLy (Su) = Aqp*Su (18¢)

The solution of these equations depends linearly on the load factor A, i.e.,
u=\; 0 =A% (19)

vhere i, ¢ represent the unit load (A = 1) solution of equations (18). To
make the linear solution satisfy the field equations, additional loads have
to be applied to the structure, Substitution of u,c from equation (19)
into the field equations, elimination of & and comparison with equations
(18) shows that Au, A0 are a solution if the additional loads are given by

A®

(1/2)2%L, () (202)

Ag+6u = A2[G+Lq1(d,6u) - qp (1)+6u] (20b)
Equations (20) determine the additional (fictitious) load system that has
to be imposed in order to enforce the linear state.t Thus the loads q + Aqg,
8 + A8 are viewed as the loads of the perfect structure.

The fictitious loads A6, Aq have the characteristics that: (1) they
are second-degree inthe load factor A, and (2) they are dead loads, i.e.,
they do not depend on the response u. Consequently, they do not enter
explicitly into the eigenvalue or higher order equatiomns. :

The identification of the linear approximation as the exact response
under the loads q + Aq and 6 + A6 permits the retrieval of the response under
the actual set of loads by using Koiter's method. This is done by viewing
the structure under the actual loads as an imperfect version of the structure
under the modified loads. Thus the behavior of the structure is obtained
approximately by treating, with the analysis of the previous section, the
following load imperfections

8 = —A® (21a)
q = -Aq (21b)

with the scalar amplitude £ =1.

iNote that whereas the stress and displacement functions obtained from the
linearized equations are made exact by the fictitious loads given by
equations (20), the strains are not.

11




It may be noted that since the prebuckling response of the perfect
structure is linear, the eigenvalue equations and the equations for higher
order terms may be simplified. For example, the term F 2 (uj,uy) in
equations (14b) and (l4c) for B and y is identically zero. Also, in
contrast to the formulation of references 6 and 7, in the present
formulation the buckling problem for the perfect structure reduces to a
linear eigenvalue problem, since both oy and uy are linear functions-of A.
From reference 9, these eigenvalue equations are

e1 = Ly(up) + A L1p(e,ug) (22a)
oy = H(ey) (22b)
o1°Ly (8u) + Accl-Lll(ﬁ,su) + 2 G°L11(ug,8u)

-~ 2,41(uy)+8u =0 (22¢)

In summary, to apply the method, the linear prebuckling, eigenvalue, and
higher order equations are solved. Using these response states and the
imperfection given by equations (21), the coefficients a, b, o, B, _and y
are evaluated. The critical load computed from equation (7) with £ = 1 is
then the desired approximation to the buckling load.

RESULTS

As noted in the Introduction, the purpose of this study was to assess
the feasibility of applying the modified structure method to shell
structures by actual application to several cases of shells of revolution
under axisymmetric loads. For such problems, there are two possible types
of elastic instability. For thin shells, the buckling is usually in the
form of bifurcation into an asymmetric (harmonic) mode. For thicker
shells, axisymmetric limit load buckling may be the failure mode. Both of
these cases are treated.

The solution of the linear prebuckling, eigenvalue, and postbuckling
equations required in the method was accomplished through the use of
prebuckling (ref. 10), buckling (ref. 11), and postbuckling (refs. 5 and
12) computer programs.t The specialization of equations (14) and (20) for
the imperfection coefficients and fictitious loads to shells of revolution
under axisymmetric loads is given in Appendix B.

7Since the writing of references 5 and 10-12, these programs have been
upgraded by the implementation of the Zarghamee method (ref. 13) of
solution of one-dimensional boundary value problems.

12




Sample Shell Calculations

Calculations of nonlinear buckling loads by the modified structure
method were made for the following sample shells, which have been studied

previously by conventional methods.

(1)

(2)

(3)

(4)

(5)

Clamped shallow spherical cap under uniform dead pressure,
The shell subtends a 20° half-

A =6 (refs. 11 and 14).
angle, and has the properties v

1/3, and t/R = 0.01094.

Prolate spheroid under uniform live and dead pressure

(ref. 11).

ry/ry = 3, and t/ry = 0.0630.

Clamped cylinder under uniform axial compression (ref. 15).
The properties of this shell are v =

L/r = 0.7,

The properties of this shell are v =

0.3, r/t =

100,

0.4,

and

Cylinder with edge rings under uniform axial compression

(ref. 16).

The cylinder properties are identical to the

clamped cylinder above, but instead of having clamped edges,

e

with ¢ > «.

zero eccentricity square edge rings of thickness
The clamped cylinder is thus equivalent to this case

Clamped shallow spherical cap under uniform dead pressure,

A =4 (ref. 14).

This shell has the thickness ratio

t/R = 0.02462 but is otherwise the same as (1), above.

The first four cases are bifurcation cases, whereas the fifth case is a

limit load case.
cases) and T =

2(-qa)1/?

relative changes in buckling load due to nonlinearity.

In the table below calculated values of y (in bifurcation
(in the limit load case) are compared to actual

B Caﬁe L 1= AS/AC Y r % err
Spherical cap (A = 6, n = 2) 0.232 2.23 _ 863
Prolate spheroid (dead pressure, n = 3) 0.00048| 0.000483| -- 0.
Prolate spheroid (live pressure, n = 3) ~0.004471-0.00444 —_ 0.7
Clamped cylinder (n = 9) 0.161 0.932 -  |479
Ring-stiffened cylinder (¢ = 0.5, n = 9)a -0.00433|-0.00462 | —- 6.4
Ring-stiffened cylinder (c = 1, n = 9)2 -0.00636]-0.00753 | —- 18.5
Ring-stiffened cylinder (¢ = 2, n = 9)2 -0.00591|-0.00905 — 53.0
Spherical cap (A = 4, n = Q) 0.472 _ 0.914{ 93.6

a
The values shown for these shells were inadvertently based on nonfunda-
mental eigenvalues.

13



Since the load imperfection theory predicts that to first order,
1 - Ag/Ae = y in bifurcation cases and 1 - Ag/Ae = T in limit load cases,
the percent error shown in the table is indicative of the accuracy of the
modified structure method. Except in the cases of very small nonlinear
effect, this error is disappointingly large. In the case of the cylinder
with edge rings, the nonlinearity in the prebuckling state, and hence the
size of the load imperfection, approach zero as the ring parameter c
approaches zero. Since the percent error in the method also gets small
with ¢, it would appear that the reason for the poor accuracy shown in cases
of significant nonlinearity is simply that the load imperfections implied
by the method are too large for the first-order theory. The possibility of
an error in the numerical calculations was essentially eliminated by
independent verification of o and y by hand, using alternate formulas for
these quantities in cases of dead loading, derived in Appendix C.

Estimate of Size of Load Imperfection

The above results suggest that, in many cases, the load imperfection
(i.e., themgative of the fictitious loads) is too large relative to the
effective applied loads (i.e., real plus fictitious loads) for first-order
load imperfection theory to treat accurately. In the case of dead loading,
the imperfection exists only in the meridional free thermal strain 6; and
the surface moment L [eqs. (B-8)]. Within the accuracy of the Donnell-
Mushtari-Vlasov approximate shell equations (ref. 17), it can be shown that
Ly is equivalent to a normal surface force X3 according to X3 = (1/r)3(rL,)/3s.
Using this equivalence, the local ratio of the imperfection in L, to the
effective applied pressure at bifurcation is plotted in figure 1 for the
spherical cap cases of the previous section.t As seen from this figure,
the mechanical load imperfection is as great as 837 of the effective applied
pressure in the A = 4 cap, and as great as 40Z in the A = 6 cap. Although
no error estimates exist for the load imperfection analysis, intuitively
one might expect imperfections of such magnitudes to be too large for a
first-order theory. Also, it is observed that the error in the
bifurcation (A = 6) case is much greater than in the limit load (A = 4)
case (see previous section), in spite of the fact that the imperfection is
greater in the latter case.

Parametric Studies

In order to prove the correctness of the theory and to assess the
growth of error with the size of load imperfection, two parametric studies

were made. One study was made for the bifurcation case and the other for
the limit load case. If the size of the load imperfection is reduced

tNo such equivalence exists for the thermal load 8;; however, the effect
of the mechanical load imperfection is dominant in these problems.
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sufficiently, say, by the factor £, from that required to fully remove the
fictitious loads, then equations (16) and (17a) should agree with non-
linear buckling loads calculated directly with the additional loads equal
to 1l - £ times the full fictitious loads.

These calculations were made for the A = 6 and A = 4 spherical caps,
and the results are tabulated in tables I and II and plotted in figures 2-5.
In table I, the numbers in parentheses are the buckling loads predicted by
equation (16), and the nonlinear prebuckling states upon which the :
bifurcation pressures p, are based were obtained at these loads. Note from
tables I and II that the critical pressures pS(O) with the full linearizing
loads (£ = 0) do not exactly agree with the linear result shown in the
table captions. This occurs since the additional loads input to the
nonlinear prebuckling program themselves contain an unavoidable imperfection
due to round-off and truncation errors, as they were computed to at most
five significant digits from the results of the linear calculatioms.
Assuming that this numerical imperfection has negligible effect on the
values of y and T, pg(0) is used in place of p. as the perfect shell
buckling pressure in this evaluation.

It is apparent from these results that first-order load imperfection
theory handles the limit load case much better than the bifurcation case.
However, even in this case the error is too large for application of the
modified structure method, which corresponds to £ = 1. It is interesting
to note that in the limit load case, except for very small imperfections,
the error is approximately given by the predicted value of 1 - pS/pS(O)
(fig. 3), which is in agreement with the analytical result presented in
Appendix A for a load imperfection proportional to the applied load. 1In
contrast to this, the error in the bifurcation case is roughly 100 times
the exact value of 1 - ps/pS(O) (fig. 2).

CONCLUDING REMARKS

An assessment of the accuracy of the modified structure method as
applied to shells has been made by comparing results obtained from it with
exact nonlinear buckling loads for several axisymmetric shells under
axisymmetric loading. The following conclusions may be inferred from this
study.

(1) The error in the modified structure method as applied here
is due to the error in the load imperfection analysis used.
This analysis is used to remove the fictitious loads that
enforce the linear prebuckling state.

15



(2) 1In cases of bifurcation buckling, except for shells for
which the nonlinear effect is so small as to be
uninteresting, the fictitious loads are too large to be
treated by load imperfection theory.

(3) The error in load imperfection theory, and therefore in
the modified structure method, is considerably smaller
in limit load cases than in bifurcation cases. However,
even in the limit load case studied, the fictitious
loads are too large to be treated accurately by first-
order load imperfection theory.

Therefore, use of the modified structure method as an inexpensive
means to calculate nonlinear buckling loads of shell structures does not
appear to be practical. However, since in the case of general asymmetric
loading (or a general shell) the limit load case is far more prevalent than
the bifurcation case, it is recommended that further study be conducted
to determine:

(1) 1if a second-order load imperfection analysis significantly
reduces the error for the limit load case studied here, and

(2) 1if the present case (a shallow spherical cap) requires un-
usually large fictitious loads.
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APPENDIX A
CONSISTENCY CHECK OF LOAD IMPERFECTION ANALYSIS
Consider the case of a load imperfection proportional to the applied

load, which is assumed to be dead [i.e., qj(u) = 0 in eq. (3)]

a(x) = Aqg (A-1a)

Il

8()) = Agg (A-1b)

From equations (1) it is clear that such an imperfection is simply
equivalent to a change in A to A(1l + g) in the perfect structure equations.
Hence, it follows that if the perfect structure bifurcates at the load A,
then the imperfect structure bifurcates at Ag = A /(l + g) For small
imperfections, i.e., || << 1, one thus obtains the result

Ag = A (1 -+ £2) (A-2)

Comparison of equation (A-2) with equation (16) suggests that in this case
equations (14) should yield o = 8 = 0 and y = 1, in which event the relative
error in equation (16), i.e., (1 - AS/AC - gy)/(1 - AS/AC), is approximately
£E. If direct calculation of o, B, and y for this imperfection gives

o =8 =0and vy = 1, this will comnsistute a check on the load imperfection
analysis.

Calculation of o

In this case, the numerator of the expression for o [eq. (14a)] is
A (01 09 + qp*uy), which is shown below to be zero. The prebuckling field
equatlons for this case are

EQ = Ll(uo) + (1/2)L2(U0)
og = H(egg - A8p) (A-3)
0'0'(580 = )\qo-éu

Differentiation of equation (A-3) with respect to A gives
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eo(l) = L1(uo(l)) + Lll(uo,uo(l)) (a-4a)
oo™ = m(e, P - 0p) ' (A-4b)
oo(l)'deo + 00'L11(u0(1),5u) = q0°%u (&-be)

Evaluation of equationsl(A—4) at A = A, and Su = uj give

eqL)x = L1(uo(1)*) + L11(u0*,u0(1)*) (4-5a)
oo(l)* = H(eo(l)* - 89) (A-5b)
oo Mweey + opreL1y (o P*,u1) = qoruy (A-5¢)

Setting Su = uo(l)* in the eigenvalue equations [eq. (8c) of ref. 9] and
using equation (A-5a) gives

1

01'80(1)* + 00*'L11(u1,u0( *¥) =0 (A-6)

Substitution of equation (A-6) into (A-5c) gives, in view of the relation
Lyi(u,v) = Lyi1(v,u),

qp*uy = c70(1)*'€1 - cfl'ﬁo(l)* a-7)

Substitution of equation (A-5b) into equation (A-7) gives, in view of the
symmetry of the linear operator H and equations (1la), the desired result

qo*ul + 031°68p = 0 - (A-8)
In effect, equation (A—8)i and hence o = 0, is the compatibility condition
for the equations for uo( )*, since the homogeneous form of equations (A-4),
evaluated at A = )., is satisfied by the buckling mode uj.

Calculation of B

From equations (A-1) and (A-8) and the fact that o = 0, equation (14b)
for B reduces to

B = F<l)(Uo1,u1)/F(l)(u1,u1) (A-9)

For the imperfection given by equation (A-1), the equations for ugy; are,
from equations (9a), (11b), and (12a),

Ly(ugi) + Lii(up¥,upy)

€901

og1 = H(egpy - lceo) (A-10)

001'650* <+ 00*.L11(u01’6u) = Acqo'(su
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Comparison of equation (A-10) with (A-4) shows that
gy = Acuo(l)* -+ 001ul (A—ll)

In this case, it is clear from equation (5) that if £ = 0 is to designate
the prebuckling path, then the_constant C;; must be chosen to be zero.
Since an imperfection of size g is equivalent to changing the load factor i
by the amount &A, to first order the prebuckling state up* has the
corresponding change gx uo(l)*, as indicated by equations (5) with § =

and (A-11) with Cp1 = 0.

In order to show that ? = 0, from equations (A-9) and (A-11) it is
sufficient to show that F(1 (uo(l)*,u{% = 0. This equality follows from the
compatibility of the equations for ug To see this, differentiate
equation (A-4) with respect to A and evaluate at A = A, to give

60(2)* = L1(uo(2)*) + L11(uo*suo(2)*) + Lz(uo(l)*) (4-12a)

00 {P% = m(e,y (D) (A-12b)

(2) (1)

00(2)*'520* + 00*'L11(UO *,Gu) + 200(1)*'L11(U0 *,Gu) =0 (A-12c)

Evaluation of equation (A-12¢) at du = u; gives

(1)

00(2)*'61 + 0o*'L11(Uo(2)*,u1) + 20 *'Lll(uo(l)*’ul) =0 (a-13)

Setting Su = uo(z)* in the eigenvalue equation [eq. (8c) of ref. 9] and
using equation (A-12a) gives

01'60(2)* + 00*'L11(u1:u0(2)*) - Gl'Lz(Uo(l)*) =0 (A-14)

In view of equations (1la) and (A-12b), 01~eo(2)* = 00(2)*'51, so that
subtraction of equation (A-14) from (A-13) gives

01'L2(UO(1)*) + 20 (l)*-Lll(uo(l)*,ul) =0 (A—lS)
However, from the definition of F(l)(u v) [see egs. (15) and ( 03 of rgf 9],
it may be seen that the left-hand side of equation (A-~153) is F (uo *,u7),
which proves that B =

Calculation of y

Since o = 0 for the imperfection given by equation (A-1), equation (1l4c)
for y reduces to, in view of equation (A~-11)

= —2[aAcF(1)(u1,u0(l)*) + qqprup + 02-60]/F(1)(u1,u1) (A-16)
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To calculate the numerator of equation (A-16), evaluate equation (A-4c) at
A = A, and Su = up, and introduce € [by means of eq. (13a) of ref. 9] to
give

(1)

00(1)*-[62 - (1/2)L2(u1) - aAcL11(uo *,u1)] + Oo*°L11(uo(l)*’u2) = qoruz (A-17)

Setting Su = uo(l)* in the variational equation for us [eq. (13c) of ref. 9]
and using equation (A-4a) gives

(1)*) + gy-Ly, (u1 ,uO(l)*)

02°eo(l)* + ggp*+Lji(us,ug
+ ax BED uy,uy %) = 0 (A-18)

Subtraction of equation (A-18) from (A-17) gives
qoeup + 05+8g = -(1/2)F(1)(u1,u1) - ach(l)(ul,uo(l)*) (A-19)

Substitution of equation (A~19) into (A~16) gives the desired result, vy = 1.
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APPENDIX B
SHELLS OF REVOLUTION

In this appendix, the fictitious loads of the modified structure
method are derived for shells of revolution. These are then specialized to
the case of axisymmetric loading. For this case the pertinent coefficients
in the A - £ relation are written in terms of shell variables. )

Fictitious Loads

Based on moderate rotation theory of shells (see, e.g., ref. 11) the
strain operator L,(u) in equation (la) is

x2 + w2
Ly(u) = P2 + w? (B-1)
2%y
where the three rows correspond to the stretching strains e, €3, and €75,
respectively. Since the curvature-displacement relations are linear, L, (u)

has no components corresponding to the bending strains k;, ko, and Kjo.
Similarly, for rings one has

Ly(u) = wxz + wy2 (B-2)
In this case, the single element of L,(u) corresponds to the hoop strain e¢.
From equations {20a), (B-1), and (B~2), the fictitious free thermal

strains are, for the shell,

A8y = (1/2)22(x2 + ?)

A8y, = (1/2)22(§2 + @2) (B-3)

8815 = A2%d
and, for rings,

a8y = (1/2)2%(a 2 + &YZ) (B-4)
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Note that the fictitious free thermal strains do not vary through the shell
or ring thickness.

In order to derive the mechanical fictitious loads, it is noted that
the term o+Ljj(u,8u) [cf. eq. (20b)] in the equation of virtual work becomes,
after partial integration, precisely the virtual work of the nonlinear terms
in the shell equations of equilibrium and natural boundary conditions [egs.
(4) and (6) of ref. 11]. These equations have been transformed in reference
5 by replacing the shell stress resultants by the natural shell force
variables P, Q, S along undeformed axial, radial, and circumferential
directions, thereby eliminating the nonlinear terms in the natural boundary
conditions and, consequently, the need for fictitious line loads applied at
shell edges.t From the identification of the nonlinear terms in the
transformed equations as pseudo loads [egs. (12) or ref. 5] and the relation
between Ty, and S [eq. (1l4a) of ref. 5], one obtains the fictitious shell
loads

A2{[(T] + T)wl /r - px}

A%y =
A%y = A2{(x'/r)(T] + Tp)w - py}
AX3 = -A\%[p(e; + &p) + u-Vp] (B=5)
8Ly = A2[F,5 + 8X1 + A3[(F1 + T2)ka/2]
My = AZ[T1% + 851 - A3[(F1 + T)p6/2]

where S =8 - 2M15/Ry (B-6)

In equations (B-5) the terms in p represent a normal pressure field, if one
exists, as required by the term q; (0)+Su in equation (20b). The cubic,

terms in A arise from the linearization of S instead of Ty,, and probably
are negligible since they are smaller than similar terms by a factor of the
rotation w. It is also noted that the quadratic nonlinearity of Tj, [see eq.
(14a) of ref. 5] introduces-a very small, if not negligible, quadratic
nonlinearity in the eigenvalue in the associated buckling equations.

tThe transformation from flz to S introduces an additional small
nonlinearity in the constitutive relations. This nonlinearity can be
eliminated by introducing a fictitious thermal stregss AO;p =

(1/2)A2(T1 + Tz)w. An imperfection thermal stress 612 = -A0;o is then
required %o compensate for AQi5, and corresponding to this, terms of the
gor? g&'e P)% in equations (14% §hou1d each be augmented by the work of
010 '\P viz. ff(aPelz/aAP)elz rd¢ds, where the derivative is evaluated

at A = and €12 is the shear strain of the buckling mode (k = 1) or
the second order postbuckling state (k = 2).
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For rings one obtains, in a similar way, the fictitious loads

AF = AF_= AF, = AN, = 0
X y ¢ ¢
= 328 4 _
AN, = A2R G (B8-7)
AN = A2T .o
y ¢y

Axisymmetric Loading

In the special case of axisymmetric loading considered in this study,
the fictitious loads are simplified greatly. Writing the load imperfection
components as the negative of the fictitious loads, one has from equations
(B-3) and (B-5)

B, = =(1/2)r2%2

X = A2py
X3 = A2[p(&; + &,) + £ap/ax + nop/dyl (B-8)
Lp = -A21)x

6y = 612 = 22 = El =0

Also from equations (B-4) and (B-7), no fictitious ring loads are required
and hence there is no ring load imperfection.

Asymmetric bifurcation. - In this case, a = 0; also, since the load
imperfection is axisymmetric and the buckling mode harmonic, it follows from
equation (l4a) that a = 0. Equations (9a), (11b), and (12a) then show that
ugy is axisymmetric, and so from equation (14b) it follows that B = 0. The
corrected bifurcation load Ag is then given to first order in terms of the

linear bifurcation load A, by equation (16) (with & = 1) and y is calculated
from the simplified form of equation (l4c)

- - 1
y = =2(q¥*-uy, + 02-6*)/ACF( )(ul,ul) (3-9)
In terms of shell variables, the numerator in equation (B-9) is
a*'uz + 02’6* = Zﬂf(il*ou + 23*0W + iZ*OX + 0T161*)rds (B-10)

The denominator F(l)(ul,ul) has been given as equation (B-3) of reference 14,
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Axisymmetric limit load.- In this case, the limit load Ag is
calculated to first order from the axisymmetric linear bifurcation load
Ao through equation (17a) (with £ = 1). The coefficient a is calculated
from equation (13a) and a is calculated from equation (l4a). In terms
of shell variables, the numerator in equation (13a) is

01°Ly(uy) = 21 T1x%rds (B-11)

where T; and x are buckling mode variables. The numerator in equation
(l4a) is identical in form to that given in equation (B-10) with the
displacements and stress resultant of the axisymmetric component of the
ups—-state being replac?d by the corresponding buckling mode variables.
Also, in this case, F 1)(u1,u1) is twice the value given by equation (B-3)
of reference 14.
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APPENDIX C
ALTERNATE FORMULAS FOR LOAD IMPERFECTION PARAMETERS

In the modified structure method the effective applied load contains
both a part which depends linearly on the load factor A (the real load) and
a part which is second-degree in A (the fictitious load). Consider a load
imperfection which is proportional by the factor g to the sum of the linear
part A(qg,0() (dead loading is assumed), plus twice the second-degree part
Aq,48 = A2(qg,0¢), L.e.,

a(d) = Aqp + 2A2q;

(c-1)

8 (1) = A8y + 2A2%e

£

Such an imperfection is equivalent to the new_loading, (1 + g)x(qo,eo) +
1+ 2§)x2(qf,ef) Insofar as 1 + 28 = (1 + £)2 for small £, this is
equivalent to simply replacing A by A(l + £) in the original loading.
Hence, for sufficiently small £, it follows that if the perfect structure
bifurcates at the load A., the imperfect structure bifurcates at

Ag =A@+ E) = (1 -8) (C-2)
Comparison of equation (C-2) with equation (16) suggests that in this case,
as in the case of pure linear loading and an imperfection proportional to
it (Appendix A), o = B = 0 and y = 1. Verification of these results from
equations (14) follows along the same lines as the calculation of a, B, and
v in Appendix A and is not repeated here.

In the modified structure method, the imperfection treated is the
negative of the fictitious_load Aq,A6 [eqs. (21)]. Formulas for o and y for
the imperfection q = 2Aq, 0 = 2A6 can be derived from the above results
simply by taking the contribution of the linear imperfection of equation
(C~1) to the right-hand side of equations (14), viz.

= (o160 + QO'U1)/F(1)(u1,u1) (C-3a)

]
(=

and if o = a

Y = 1+ 2(02'90 + qo-uz)/F(l) (ul,ul) (C—3b)
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Since the imperfection of the modified structure method differs from this
imperfection by the factor -1/2, one obtains from equations (C-3) alternate
formulas for o and y of the method, viz.

~(0189 + qo+u1)/2F (uy ,up) (C-4a)

o

—1/2 - (02.60 + q0~u2)/F(l)(u1,u1) (C—4b)

<
]

Note that these formulas are free of explicit dependence on the fictitious
loads, qp and 6, being the real applied mechanical load and free thermal
strain at unit A. They provide an independent verification of the
numerical evaluation of o« and y, including the calculation of the prerequi-
site prebuckling, buckling, and postbuckling states.
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TABLE I

CLAMPED SPHERICAL CAP, A = 6, p_ /E x 10° = 14.8572, n, = 2
_ _ Eyk = 7% error =
£ gy Pg/E x 10° |1 - p./p (0)|(y/y* - 1) x 100
0 0 14.85780 (14.86) 0 _
0.0001 | 0.000223 | 14.85455 (14.85) 0.000219 )
.001 .00223 | 14.8298 (14.82) .00188 19
.004 .00894 | 14.7717 (14.72) .00579 54
.01 .0223 14.690  (14.53) .0113 98
.02 L0447 14.593  (14.19) .0178 150
.05 .1118 14.400  (13.20) .0308 263
TABLE II
CLAMPED SPHERICAL CAP, A = 4, p_/E x 10° = 81.220, n,6 =0
_ -1/2 Ellzr* = % error =
3 T |p /Ex 10° |1 - p /P (0) | (r/T* - 1) x 100
0 0 81.302 0 —-—
0.001 | 0.02890 78.964 0.02876 0.5
.01 .0914 74.45 .0842 8.6
.1 .2890 63.20 .2226 29.8
1 .914 42.9 L472 93.6
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